
©William Jones, 2010, all rights reserved. 1

XooML: XML in Support of Many Tools Working on
a Single Organization of Personal Information

William Jones, the Information School, University of Washington

ABSTRACT
XooML takes a step towards addressing a basic tension in the
development of supporting tools of Personal Information Man-
agement (PIM) and, more generally, in the development of com-
puter-based tools for end users: How to innovate without forcing
people to re-organize or re-locate their information?. Seven con-
siderations in the design of a XooML schema follow from expe-
riences in the iterative evaluation and development of a Planz
prototype. Considerations take aim on a vision of PIM: One, inte-
grative structure for the organization of personal information;
many tools in support of this structure, its creation and its life-
long development.

Categories and Subject Descriptors
H5.m. Information systems: Information interfaces and presenta-
tion (e.g., HCI): Miscellaneous.

General Terms
Documentation, Design, Human Factors

Keywords
Personal information management, PIM, XML, RDF.

1. INTRODUCTION
One lament for this age of digital information might be “every-
place to go but no place to call home”. Personal information, i.e.
the information that is relevant to a person in one way or another,
can be anywhere and nowhere in particular. Or consider the fol-
lowing quote:
It turns out that about 95 percent of what I do on a computer can
now be accomplished through a browser. I use it for updating
Twitter and Facebook and for blogging. Meebo.com lets me log
into several instant-messaging accounts simultaneously. Last.fm
gives me tunes, and webmail does the email. I use Google Docs
for word processing, and if I need to record video, I can do it
directly from webcam to YouTube… 1

The brave new world of Web computing described in this quote
clearly has its dark side. Though the Web browser may be a
common starting point, this person’s information is widely scat-
tered across the varied terrain of the Web. He must navigate be-
tween many different web sites and services each of which may
follow slightly different conventions for how “his” information is
organized. And “his” must be placed in quotes since the owner-
ship of this information is very much at issue.

2

1 “The Netbook Effect: How Cheap Little Laptops Hit the Big

Time”, Clive Thompson, Wired Magazine, 02.23.09.

 Information en-

http://www.wired.com/gadgets/wireless/magazine/17-
03/mf_netbooks.

2See, for example, “Zuckerberg on Who Owns User Data on Fa-
cebook: It’s Complicated”, Erick Schonfeld, TechCrunch,

trusted to a Web service could be used in ways that the person
posting the information neither expects nor wants. And what if
this Web service should disappear one day or its databases be-
come corrupted? There are no guarantees.
People are more likely to consider theirs what is in the file system
on their personal computer. To the extent that people invest in the
organization of digital information, this investment is most likely
to be first with the organization of the files and folders on the
local file system [1]. People may even be heard to speak of the
folders on their hard drive as “physical” in contrast to, for exam-
ple, tags or “virtual” folders [7]. Moreover, the folders of the local
file system aren’t used just for organizing information; these are
information in their own right representing, in rough fashion, for
example, a project’s structure and state of completion [19].
Notwithstanding these benefits, the file system of a personal com-
puter has limitations of several kinds. Support for viewing and
manipulating information may not be appreciably better now than
what was available (on some computers) more than two decades
ago. The hierarchical structure of the file system also has underly-
ing expressive limitations [9]. And the placement of files into
folders can be a difficult act of categorization forced upon a per-
son before there is clear sense of the file’s purpose or its relation-
ship to other files [24][25].
Where does this leave people as they struggle to manage ever
larger amounts of personal (or personally relevant) information?
Personal information is increasingly scattered across a profusion
of new services available on the Web and also on handheld devic-
es. Each seems to say “trust us with your information and leave
the file system behind”. Even so, significant portions of personal
information – perhaps the largest, most important portions – re-
main on the “good, old” file system.
The result is that people who lack the time or expertise to main-
tain one store (e.g., the local file store) may find that they must
maintain and synchronize between several. Each new PIM tool,
even as it brings new benefits, also adds further complication
aggravating what may be one of the most serious problems of
PIM: Information fragmentation [16]
In a recent study [3], participants were asked to describe their
“ideal system of information management”. Seventeen of twenty
mentioned the problem of information fragmentation and ex-
pressed a desire for greater integration of information:
“ideally I would have like a unified system, I wouldn’t have all
these different databases and all these different check lists and
manuals”…“something that unified all of the separate tools and
databases that I use” –JS-182

02.16.09. http://www.techcrunch.com/2009/02/16/zuckerberg-
on-who-owns-user-data-on-facebook-its-complicated/.

http://www.wired.com/gadgets/wireless/magazine/17-03/mf_netbooks�
http://www.wired.com/gadgets/wireless/magazine/17-03/mf_netbooks�
http://www.techcrunch.com/author/erick/�
http://www.techcrunch.com/2009/02/16/zuckerberg-on-who-owns-user-data-on-facebook-its-complicated/�
http://www.techcrunch.com/2009/02/16/zuckerberg-on-who-owns-user-data-on-facebook-its-complicated/�

©William Jones, 2010, all rights reserved. 2

“..maybe go from media to media a little bit better, …if I store
something out on the wiki, it will also store something on, in the,
in the file structure.” –AP-123
“You know, something that puts all the stuff in once place instead
of having all these different places … I use de.lic.ous for web
references, I use my Mail app for email, I use, um, Things for the
… project information but sort of task-coordination…. And so
everything's in its own little place ...” – JT-135
A unified system. Everything in one place. Integration. But how is
this accomplished?

Various proposals and prototypes have been made over the years.
The Memex would link and organize information through “asso-
ciative” trails. [4]. Lifestreams places documents and other infor-
mation items in a continuous, time-ordered stream [11]. Presto
offers a uniform property-based platform for information man-
agement[10]. Haystack[22][21] attempts a uniform encoding of
information in RDF (Resource Description Framework) subject-
predicate-object “statements”3 and also introduces the important
notion that “anything of interest” might be addressable by a Uni-
form Resource Identifier (URI)4

The integrative potential of personal ontologies is explored
through prototypes such as OntoPIM[5], OBIWAN[6], and PIA
designer[8] although is also noted that “… ontological structure is
not very clear, especially to a non-expert user with no familiarity
with ontologies”[23:6].

. MyLifeBits is able to store a
wide variety of information types in a SQL Server database [12].

An irony inherent to any well-meaning effort aimed at integration
is that the opposite may be the actual outcome. A new tool enthu-
siastically embraced for its integrative potential may later be
abandoned with a gradual realization that older structures are still
needed for other tools [2]. Stories of tool and system abandon-
ment [15] point to two additional issues of “integration”:
1. How to integrate into people’s existing ways of working with

and thinking about their information?
2. How to work with the structures and tools people have al-

ready for managing their information?
Paradoxically, people may be more inclined, eventually, to aban-
don existing tools and structures in favor of the new only if they
are first assured that they don’t have to.

1.1 The plan and purpose of this paper
This paper is structured into the following sections:
 Planz is described as one attempt to address the two
issues of integration posed above. The section reviews the motiva-
tions, design, and current status of Planz. Most important, the
section reviews lessons learned through several iterations in the
development and evaluation Planz.
 Seven generalizations follow from an assessment of
these “lessons learned” in the prototyping of Planz. Generaliza-
tions accept a world in which there are and always will be a multi-
tude of tools competing for our time, money and attention. Can
these tools do so “non-disruptively”, i.e., in ways that support the
organic growth of an integrative organization of personal informa-
tion over time?

3 http://www.w3.org/RDF/
4 http://tools.ietf.org/html/rfc3986. See also a generalization

through provision for the Universal Character Set
(http://annevankesteren.nl/2005/02/iri).

 XooML is an XML5

Considerable work has already gone into XooML and its proof-of-
concept use in three separate tools. Even so, XooML is presented
in this paper not as a completed project but rather as an effort that,
by its nature, may always be a work in progress. The paper invites
the reader on a journey to explore how XooML might be used in
support of a vision: Many tools; one (integrative) structure,

-based approach that takes a first
step toward addressing these seven generalizations.

2. PLANZ
Planz provides document-like overlays to a personal file system in
support of a project-based organization of documents and other
forms of information including email messages, web references
and informal notes.6

Design of Planz has consistently been guided by two principles:

 Organize incidentally. Ideally, useful organizations of
personal information emerge as an incidental by-product of other
activities a person must do in any case. People work to complete
projects. People sometimes give informal expression to a project
plan – for example as a simple outline or draft document [17].
Can the structure in such a document also provide a basis for the
organization of the information needed to complete the project?
 Organize integratively. Integrate with existing applica-
tions and as a thin overlay to existing structures. In Planz, for
example, document-like project plans are simply an alternate way
to view and work with a folder hierarchy in the file system. The
headings/subheadings of a plan correspond to folders/subfolders
in the file system. Planz also integrates with existing support for
time and task management.7

2.1 On the front-end, a document

Planz displays a folder structure in either a draft or outline view
(see figure 1). This document can be edited to show all of a per-
son’s projects and tasks in a single, scrollable view. Headings
often represent high-level projects (“Plan family vacation for
summer”); subheadings then represent component tasks (“Make
plane reservations”).
This document also provides the basis for an organization of
project- and task-relevant information via two basic operations:
 “Drag & link” to existing documents, email messages
and web pages from the “outside-in”. Simply select the item, drag
and drop to a location within the Planz document. The item stays
where it is (as a file, email message or web page) but a link point-
ing to this item is created within the Planz document. Or, select
text as a summary or “hook” to the item. Drop the text into the
Planz document plan to place a copy of the text in a new note with
a link back to the item.
 In-context create. Send email messages and create new
documents from the “inside-out”. These items are created as they
would be normally (in separate windows managed by supporting
applications such as the word processor or email application).

5 XML, EXtensible Markup Language, http://www.w3.org/XML/.
6 The version of Planz (8.2) described here is a desktop applica-

tion based on .NET 3.0. Planz works under Microsoft Windows
and integrates with Microsoft Outlook, Microsoft Word, and
other Microsoft Office applications. However, the Planz ap-
proach readily extends to other operating systems and other ap-
plications.

7 Current integrations for time and task management are with
Microsoft Outlook.

http://www.w3.org/RDF/�
http://tools.ietf.org/html/rfc3986�
http://annevankesteren.nl/2005/02/iri�
http://www.w3.org/XML/�

©William Jones, 2010, all rights reserved. 3

However, Planz places a link to the document created or the email
message sent near the insertion point within the Planz document.

Figure 1. A sample "Plan" in Planz. Headings
/subheadings represent file system folders/ subfolders.
Notes can point to files, emails and web resources.

In other respects, Planz has the affordances of a basic word pro-
cessor: 1. Type directly to create or modify notes and headings. 2.
Move headings and notes up or down as one might move blocks
of text in an electronic document. 3. Expand and collapse head-
ings to reveal or hide content. 4. Promote notes to be headings;
demote headings to be notes.
The document overlay of Planz has made the realization of addi-
tional features straightforward:
 In-place expansion. Link to any accessible folder from with-

in a Planz document; expand to see this folder’s contents in-
place.

 Folder-focused views. By default, Planz presents a document
that is focused on a “Projects” folder.8

 Save As HTML. The document presented in a Planz window
can be saved as an HTML file to be viewed in a Web brows-
er or edited in a word processor. Structure as well as content
is preserved.

 However, for any
folder selected in the file manager, Planz can also be invoked
as a right-click option to present a view focused on this fold-
er instead.

9

8 “Projects” is created on installation of Planz as a sibling folder

of “Documents” (or for Windows XP users, “My Projects”).

9 In Microsoft Word, for example, headings are given a “style” of
Heading 1, 2, 3… according to heading level within Planz.

 Export Structure. The structure of a Planz document can also
be exported for re-use either as a project template or for im-
mediate use in another project. 10

2.2 On the back-end, the file system

Headings and subheadings correspond to file system folders and
subfolders. Links within Planz correspond either to local files
within these folders or to shortcuts which, in turn, can point to
files, web pages or email messages. The mapping from headings
and links to folders and files/shortcuts is one-to-one.
In short, Planz works with and as an alternative to the file manag-
er. Users can create, modify or delete folders and files through
operations initiated within Planz. In the other direction, a process
of synchronization insures that document views of Planz are cur-
rent with respect changes to the file system made outside Planz.

2.3 A meeting in the middle
Central to the Planz approach and its research significance, are
choices made at a middle level. Planz realizes its document over-
lay through a dynamic, “on-demand” assembly of many small
XMLfragments.

Figure 2. Planz generates a document-like view
through an on-demand assembly of xml fragments,
one per folder to be represented.

Each XML fragment defines a “Plan” – the basic unit of organiza-
tion within Planz. A Plan is an ordered list of associations. An
association can, but need not, have a link to an information item
such as a folder, file, email or web page. An association can be
“promoted” from a note to a heading which, in turn, can be ex-
panded in-place to reveal contents. Currently this expansion
works only when the information item of the expansion is a fold-
er. But generalizations discussed later would permit this to work
for other information items as well.
“Plans” under Planz are in one-to-one association with folders.
The XML fragment defining a Plan is stored as an ordinary text
file within the associated folder. The actual display of a Plan fol-
lows a process of synchronization between a Plan’s XML frag-
ment and the “reality” of the associated folder’s actual contents.
In cases of conflict, the file system always wins.

2.4 Current status and lessons learned
The planned development for Planz as a prototype is now com-
plete. The code of Planz has been open-sourced.11 Planz is availa-
ble for free download12

10 The export of structure copies the folder structure of a Planz

document but not the content within these folders.

. Planz has a small but dedicated group of

11 http://code.google.com/p/xooml/.
12 For download: kftf.ischool.washington.edu/planner_index.htm

http://code.google.com/p/xooml/�
http://kftf.ischool.washington.edu/planner_index.htm�

©William Jones, 2010, all rights reserved. 4

users13

In earlier directive evaluations, Planz (then the Personal Project
Planner) was used in a controlled setting to assess the overall
approach and to prioritize feature development [18]

 and has been the subject of numerous evaluations, infor-
mal and formal.

In a recent evaluation [20], Planz was used by eight participants
on a daily basis for from five to twelve days. On a measure of
“project awareness” (progress and current status of a project),
participant assessments gave a significant advantage to Planz over
the “status quo” (a participant’s existing constellation of tools and
techniques). On the other hand, participant ratings also gave a
significant advantage to the status quo for email management.
Comments volunteered in the concluding interview of this evalua-
tion were generally favorable and two participants expressed the
intention to continue using Planz.
Why not all eight? The Planz that participants used was a proto-
type, slow to react at times and missing numerous smaller features
of “fit and finish”. But another impression taken from the inter-
views was that participants already had a “full plate” of tools for
PIM. Even as participants expressed a desire – a yearning – for
better, more integrative tools of PIM, they also expressed a reluc-
tance to invest their time and information in a new tool for fear of
adding further complication to their lives.
Four participants expressed appreciation for integrations with
existing applications such as Microsoft Outlook and the Windows
Explorer. Participants indicated that they freely switched between
Planz and the Windows Explorer to take advantage of features in
each. But ratings of email management suggest that other integra-
tions were less than perfect.
What would be needed for better integration? Could integrations
be Web-based and “operating-system agnostic”? What if people
were able to switch freely and easily between any number of tools
– picking and choosing those that best fit the current need? What
if any number of tools could be brought to bear in service of a
“living”, growing structure of personal information?
These and related questions prompted a review of the XML-based
architecture of Planz. The basic approach seemed sound: Con-
struct large, coherent views of information from the flexible, on-
demand assembly of many small XML fragments. However, the
Planz of the most recent evaluation14

Could a schema be designed to meet not only the needs of Planz
but any number of other tools as well?

 made a private use of XML
not formerly documented.

3. SEVEN GENERALIZATIONS
Experiences with Planz and the choice points of its design extend
to seven directions of generalization:
G1. From some tools to many
Consider a basic folder hierarchy. This might be rendered in vari-
ous ways through various tools. The Windows Explorer provides
a basic tree-control. Planz supports a document-like interaction.

13 To quote one user: “I am using Planz everyday! It is really awe-

some when I am trying to locate files associated with my
project, links to my folders and my mail.”

14 This was Planz 7. The current Planz 8 has been extensively re-
architected to use Windows Presentation Foundation and to use
XML based on the XooML schema.

Another tool might support a mind-mapping view15

G2. Tool classes and metadata standards

. Each interac-
tive mode makes use of the same basic structure but each mode
provides additional affordances and requires additional attributes.
Using Planz, for example, people can decide to view a folder
shortcut as either a note or a heading. A heading, in turn, can ap-
pear expanded or collapsed. In order for settings (heading or note,
expanded or collapsed) to persist between sessions, Planz needs
its own attributes. Likewise, in order to persist a mind-mapping
view, a tool might need attributes to record the relative position of
mind map elements. A schema should, therefore, make provision
both for the basic structure and for tool-specific attribute bundles.

Moving beyond a provision for individual tools, the schema might
also make provision for tool classes. There might, for example, be
provision for a class of mind-mapping tools or a class of “Getting
Things Done” (GTD)16 tools. Or a class of tools might be defined
for a collection of items all of the same kind – songs or photo-
graphs or books. One ready way to define a class of tools is in
relation to a metadata standard (for a review, see [13]) such as the
Dublin Core Metadata Initiative17

G3. From file folder to any information item.

. Tools of a class would be ex-
pected to work with and provide uniform treatment for the proper-
ties defined by the standard.

In Planz, XML fragments of metadata are placed in association
with file folders. A generalization would provide the basis for
associating fragments of metadata to a variety of information
items including, for example, local documents, email conversa-
tions and a wide variety of Web-based resources.
G4. The XML fragment: from file system folder to anywhere.
In Planz, an XML fragment is actually placed as a file within the
folder it describes. A generalization, in line with G3, would sup-
port a decoupling of fragment storage from storage of the item to
which a fragment applies. Fragments might, for example, be
stored in a personal Web store and organized into a simple data-
base “keyed” by the URI to which a fragment applies. A fragment
can then be used to annotate and link “from” (as well as “to”)
items such as web pages or shared documents even though a per-
son may not have permission to change the item itself.
G5. The level of synchronization: From strong to varied.
Before their use in any Planz display, XML fragments are syn-
chronized with the underlying “reality” of the folders they de-
scribe. In cases of conflict, the file system always wins.
But in other circumstances, for other information items, the syn-
chronization might be much looser. In the opposite extreme to the
current strong synchronization of Planz, the XML fragments in
some cases might bear little direct resemblance to the structure or
content of information items they describe. A fragment might,
instead, represent “my thoughts about this item” or “things I relate
to this item”.

15 Buzan, Tony. (2000). The Mind Map Book, Penguin Books,

1996. ISBN 978-0452273221.
16 Allen, David (2001). Getting Things Done: The Art of Stress-

Free Productivity. Penguin Books. ISBN 0-14-200028-0.
For a review of GTD applications see LifeHaker.com’s “Best of

GTD”, http://lifehacker.com/software/getting-things-done/best-
of-gtd-161916.php.

17 See, for example, the (http://dublincore.org/).

http://en.wikipedia.org/wiki/Tony_Buzan�
http://en.wikipedia.org/wiki/Penguin_Books�
http://en.wikipedia.org/wiki/Special:BookSources/9780452273221�
http://en.wikipedia.org/wiki/David_Allen_%28author%29�
http://en.wikipedia.org/wiki/International_Standard_Book_Number�
http://en.wikipedia.org/wiki/Special:BookSources/0-14-200028-0�
http://lifehacker.com/software/getting-things-done/best-of-gtd-161916.php�
http://lifehacker.com/software/getting-things-done/best-of-gtd-161916.php�
http://dublincore.org/�

©William Jones, 2010, all rights reserved. 5

G6. Means of enumerating and modifying item structure.
Planz “reads” from and “writes” to a folder through calls into the
file system. More generally (in support of G3 and G5), tools need
to share the same or consistent means of enumerating and modify-
ing the structure of the item being described.
G7. From operating system-specific hierarchy to a distributed,
universally accessible directed graph.
The final generalization follows from the first six. Planz, as an
overlay to the Windows file system, works with a hierarchy (mod-
ified to include shortcuts). In the spirit of the Web, a schema
should support the platform-independent, flexible representation
of a structure as a multidigraph18

4. XOOML

. A multidigraph is essentially a
structure in which a node can point to another node (or to itself)
via more than one link (arc, arrow). For example, Web pages and
their hyperlinks define a multidigraph.

As a first step towards addressing these generalizations, consider
the design of an XML-based schema called XooML (pronounced
“zoom’l”) for Cross (X) Tool Mark-up Language.19

How to develop a schema with provisions for each direction of
generalization? The first direction, in particular, – from one tool to
many – requires special consideration. Two requirements follow:

 The schema needs to provide “growing room” for any num-
ber of tools to persist tool-specific settings as attributes.

 There must be no risk of confusion or collision between the
attributes used by different tools.

We originally considered the mandatory use of namespace prefix-
es20

A better approach bundles tool-specific attributes into special
tool-specific sub-elements. A given sub-element and each of its
attributes can then be uniquely specified by the tool-specific URI
of its namespace declaration

, one per tool, which could then be prepended to all attribute
names used by a given tool (e.g., “thisTool” as a prefix for “thi-
sAttribute”). But clearly, the mandatory use of prefixes carries its
own issues of confusion and potential collision. For example, we
might select the prefix “planz” for the Planz tool. But suppose
another tool decided to use this prefix as well? Checking all
XooML fragments for potential conflicts isn’t feasible. But nei-
ther is the maintenance of a central registry of “Prefixes used by
tools that use XooML”.

21

1. For any given information item, the XooML schema defines the
structure of an associated fragment of metadata. As depicted in

. The use of elements to bundle
attributes happens at two levels:

Figure 3, a fragment is a bundling of fragment-level “common”
(tool-independent) attributes followed by zero or more bundles of
tool-specific attributes (fragmentToolAttributes) followed by zero
or more elements of type association.

18 See, for example, Bollobas, Bela; Modern Graph Theory,

Springer; 1st edition (August 12, 2002). ISBN 0-387-98488-7.
19 See kftf.ischool.washington.edu/XMLschema/0.41/XooML.xsd
20 http://www.w3.org/TR/REC-xml-names/.
21 E.g., xmlns=http://kftf.ischool.washington.edu/xmlns/planz. To

aid in readability tool might still include a tool-appropriate pre-
fix in its namespace declarations and then prepend this prefix to
its attributes. But doing so is optional.

Figure 3. A XooML fragment is bundling of “com-
mon” (tool-independent) attributes followed by zero
or more bundles of tool-specific attributes (fragment-
ToolAttributes) followed by zero or more associations.

2. This pattern is partially repeated for each association element
within a fragment. As depicted in Figure 4, an association is a
bundling of common (tool-independent attributes) followed by
zero or more bundles of tool-specific attributes.

Figure 4. An association is a bundling of common
(tool-independent attributes) followed by zero or
more bundles of tool-specific attributes.

Essentially, each XooML fragment is bundling information for a
node and its outgoing links – a “noodle”, we might say. Frag-
ments in aggregate define a (multi)digraph.

Figure 5. A snippet of a XooML fragment.

A snippet from a XooML fragment is displayed in Figure 5. A
XooML fragment represents attributes at two levels – for the
fragment and for each of its associations. At each level, some
attributes are tool-independent or “common”; other attributes are
tool-specific. Consequently, the attributes of a fragment are readi-
ly summarized in a matrix (see Table 1).

http://en.wikipedia.org/wiki/Special:BookSources/0387984887�
http://kftf.ischool.washington.edu/XMLschema/0.41/XooML.xsd�
http://www.w3.org/TR/REC-xml-names/�
http://kftf.ischool.washington.edu/xmlns/planz�

©William Jones, 2010, all rights reserved. 6

Table 1. A matrix summary of fragment attributes.
(Values are mandatory only for attributes in bold).

 Fragment Association

Common22 schemaVersion
relatedItem
defaultApplication
levelOfSynchronization
…

ID
associatedItem
associatedIcon
associated-
XooMLFragment
displayText
openWithDefault
…

Tool-specific
(Planz)

toolVersion
toolName
showAssociationsMarked-
Done
showAssociationsMar-
kedDefer
….

isVisible
is Heading
isCollapsed
…

Tool-specific
(FreeMind)

toolVersion
toolName
…

radius

polarAngle

…

Another
tool...

… …

The XooML schema is currently being actively used by three
separate tools:
 Planz (version 8.2) as discussed above.
 QuickCapture23

 FreeMindX – created by “wrapping” the open-source
FreeMind

 – invoked with a click of Windows
(the flag key) + c and used to capture a link to the item (docu-
ment, email message, web page) in the active window. The link
appears by default as a shortcut in a “Notes” folder and as an as-
sociation under the corresponding heading in Planz.

24

 tool with support for XooML.

Figure 6. The house re-model of Figure 1
rendered as a mind map in FreeMindX.

FreeMindX, directed to the same “House re-model” depicted in
Figure 1, yields the mind-map view shown in Figure 6.

22 Other common attributes include createdBy (URI), createdOn

(time/date), lastModifiedBy and lastModifiedOn.
23 QuickCapture comes with the installation of Planz and can also

be installed separately.
24 http://freemind.sourceforge.net/wiki/index.php/Main_Page

“xooml.xml” fragments have shared use by each tool and can be
easily inspected to see how XooML works in practice.
However, one thing to note in both Table 1 and in Figure 5 is the
schemaVersion attribute. The schema is currently, deliberately,
set at a somewhat arbitrary “dot” version number of “.42” to indi-
cate that the schema is still in a formative stage of development.
As more tools use XooML, there will certainly be follow-on ver-
sions to incorporate lessons learned. New attributes will be added;
existing attributes reinterpreted. We do not, however, expect
changes to the basic structure of the XooML schema as depicted
in Figure 3 and Figure 4.

4.1 XooML for seven generalizations
The XooML schema provides support for each of the seven gene-
ralizations:
G1. From some tools to many
Any tool can push its attributes into a XooML fragment as a way
to add metadata both for the fragment overall (and its related
item) and for each of a fragment’s associations. Tool-specific
attributes are bundled into sub-elements in a fragment. Sub-
elements are identified through a namespace declaration (xmlns).
For example, Planz uses the fragment-level attributes of showAs-
sociationsMarkedDone and showAssociationsMarkedDefer (Table
1) to determine whether to display associations that have been
deferred or marked as “done”.25

G2. Tool classes and metadata standards

 Planz uses association-level
attributes to determine whether or not to display an association
(isVisible) and, if so, as a heading or a note (isHeading) and, if a
heading, then expanded or collapsed (isCollapsed). Likewise, a
mind-mapping tool such as FreeMind might use attributes to de-
termine the relative position of one node to another (e.g., radius,
polarAngle). Tools can do what they like, so to speak, within their
sub-elements. Attributes needn’t be defined or named according
to (any) convention as long, of course, as the tool itself can make
good use of attribute information.

The namespace declaration of a sub-element can, just as easily,
refer to a metadata standard (e.g.,
xmlns:http://dublincore.org/documents/dcmi-namespace/). Tools
reading and writing to sub-elements so identified would be ex-
pected to “understand” and consistently use the attributes defined
through the standard. Tools working with Dublin Core metadata
would, for example, be expected to make consistent use of
attributes such as “Title”, “Creator” and “Publisher”.26

G3 thru G6

Generalizations G3 thru G6 are in direct correspondence to
XooML attributes (Table 2). However, correspondence is only the
first step. Questions remain, especially in relation to G5 and G6.

25 See the “Managing workflow and clutter control” in the Planz
user manual and the associated video for more information con-
cerning the “Done” and “Defer” features of the Review tab:
http://kftf.ischool.washington.edu/planner/User_Manual/HTML/u
ser_manual.html.
26 Do the attributes of a tool class or metadata standard apply at
the level of associations or fragments? Either or both depending
upon the attribute: Fragment level, if the attribute describes an
information item (e.g., a song, article, photograph, task). Associa-
tion level, if the attribute applies to the relationship between two
information items. Association level also if there is a need to
cache item attribute values for fast display (e.g., in a listing).

http://freemind.sourceforge.net/wiki/index.php/Main_Page�
http://dublincore.org/documents/dcmi-namespace/�
http://kftf.ischool.washington.edu/planner/User_Manual/HTML/user_manual.html�
http://kftf.ischool.washington.edu/planner/User_Manual/HTML/user_manual.html�

©William Jones, 2010, all rights reserved. 7

Table 2. Generalizations and XooML attributes

G3 From file folder to any
information item

relatedItem, associatedI-
tem

G4 The XML fragment: from
file system folder to any-
where

Associated-
XooMLFragment

G5 The level of synchroniza-
tion

? levelOfSynchronization

G6 Means of enumerating and
modifying item structure

? defaultApplication

XooML fragments in Planz are fully synchronized with corres-
ponding file system folders (relatedItem). In cases of disagree-
ment, as noted above, the file system always wins. At the other
extreme, a fragment might have nothing at all to do with the con-
tents or hyperlink structure of its relatedItem. The fragment
might, instead, include associations to represent “thoughts about
the page” and to point to “related information”. Other levels of
synchronization might support a relationship in which a person is
able to “subscribe” selectively to changes in an item or is able
selectively to effect changes in item structure.
With respect to G6, the means of enumerating and modifying item
structure, simply pointing to a defaultApplication is only one step.
Also needed is an appropriate interface through which to enume-
rate and modify item structure.27

Questions also arise concerning the address values in relatedItem,
associatedItem and associatedXooMLFragment. In most cases,
the value is an absolute (fully qualified) URI. However, in some
cases, the value may be a partial address that combines with a
base address to yield an absolute URI. In Planz, for example, the
associatedItem is given a relative path when pointing to a “local”
file or subfolder. An absolute path is derived by concatenating this
path to the path for the parent folder. Addresses then remain valid
even as parent folders are moved within the folder hierarchy.

G7. From operating system-specific hierarchy to a distributed,
universally accessible directed graph.
Generalizations combine to support a structure that is, potentially,
highly distributed. XooML fragments might be local to a person’s
personal file system or up on the Web. Fragments might be placed
inside the information item they describe – as a file inside a fold-
er, for example, or possibly even as a private stream of text inside
a document. Or fragments might be placed in “nooks and cran-
nies” of space freely available on the Web. Large groups of frag-
ments might be organized into a simple, central, Web-based rela-
tional database.28

Each fragment, as a metadata description of an information item,
is, in its own right, a groping of information. Its associations de-
fine a unit of choice – the subfolders and files to open under a
folder, for example, or the hyperlinks to click from a Web page.

More important, fragments link together via their associations to
create a thin integrative overlay that “floats” over the information
items they describe. A vision is that people might create, modify

27 Something similar, for example, to the IshellFolder interface

and its support for an EnumObjects method
(http://msdn.microsoft.com/en-
us/library/bb775075%28VS.85%29.aspx).

28 For example, a SQLite database (http://www.sqlite.org/) with
records keyed by relatedItem.

and use this structure by picking and choosing from a large and
growing arsenal of XooML-supporting tools.

4.2 Working with XooML
Fragments are used by a XooML-supporting tool such as Planz
(8.0) or FreeMindX to generate a coherent view through the fol-
lowing steps:
1. Process an initial fragment and synchronize its meta-
data (as needed) with the relatedItem. In Planz, the initial frag-
ment, by default, is the XooML fragment for a “Projects” folder.
The contents of this fragment are compared with the actual con-
tents of the “Projects” folder. In cases, of conflict, the fragment is
modified to agree with the file system. From this top-level syn-
chronized XooML fragment, Planz builds a top-level Plan.
2. Recursively retrieve and process additional XooML
fragments as needed. In Planz, for example, the subfolders and
folder shortcuts of a folder appear within the folder’s Plan as doc-
ument-like heading associations. For each of these headings that
were last shown as “expanded”, Planz retrieves folder content
information and an associated XooML fragment and then uses the
results of their synchronization to determine the display of sub-
Plans.
3. View completion is tool-dependent. In Planz, the
process completes when sub-plans have been generated for each
in a list of “expanded” associations encountered during the
processing of XooML fragments. In another tool, display genera-
tion might stop when some number of fragments has already been
displayed or when fragments have been displayed to a certain
depth from a starting fragment.
This process works for a wide variety of what might be call tree-
view tools – tools designed to display and work with hierarchical-
ly structured information. Hierarchies are widely used in the or-
ganization of personal information [9]. For purposes of visualiza-
tion and manipulation, hierarchies are often represented as trees –
i.e., as connected, acyclic graphs.
Herman et al (2000) review a large number of distinct tree visua-
lizations including H-tree layout, radial view, balloon view, and
tree-map. Several forms of tree visualization are found in file
managers such as the Macintosh Finder and Microsoft’s Windows
Explorer.29 Mind maps, in all their variety,30 including those of
the PersonalBrain 31

Farther afield, are views of a conventional hierarchically struc-
tured document (e.g., with headings and subheadings marking
different levels). Even Web pages provide a kind of tree view
since most conform to the hierarchical Cascading Style Sheets
(CSS) box model

, are tree views.

32

All tree views, broadly defined in this way, can follow the same
three steps of rendering listed above. For example, a hypothetical
“box-model” tool wrapped with XooML support might “pour” a
portion of the directed graph defined by XooML fragments into a
newly generated Web page. Associations in a fragment would be
represented as sub-boxes (until some stopping function is
reached). If the initial tool-generated layout of boxes and sub-
boxes is modified by the user, then this layout can persist in
XooML through association-level, tool-specific attributes.

.

29 For a review see, http://en.wikipedia.org/wiki/File_manager.
30 For a sampling, http://en.wikipedia.org/wiki/Mind_map.
31 http://www.thebrain.com/.
32 http://www.w3.org/TR/CSS2/box.html.

http://msdn.microsoft.com/en-us/library/bb775075%28VS.85%29.aspx�
http://msdn.microsoft.com/en-us/library/bb775075%28VS.85%29.aspx�
http://www.sqlite.org/�
http://en.wikipedia.org/wiki/File_manager�
http://en.wikipedia.org/wiki/Mind_map�
http://www.thebrain.com/�
http://www.w3.org/TR/CSS2/box.html�

©William Jones, 2010, all rights reserved. 8

The node represented by a XooML fragment can be bushy – it can
have hundreds or thousands of associations to represent, for ex-
ample, a collection of photographs, songs, articles, etc Items in
such a collection are often characterized by and distinguished
from each other by a common set of properties (e.g., author, title,
year of publication).In such cases, fragment-level, tool-specific
attributes might be used to store the values needed to re-create the
current view (e.g. properties on display, sort order, etc.).
Or consider the somewhat curious case of Microsoft OneNote. A
XooML structure could be “poured” into the standard OneNote
view in a way that takes advantage of OneNote’s provision for
section tabs (on top) and page tabs (to the right side):
1. Use a starting XooML fragment to fill the first page of a
section tab. Each association becomes a separate text box on the
page with layout initially determined by OneNote.
2. Fill additional pages, each with an associated-
XooMLFragment reached from an association of this “front-page”
fragment.
Again, as with the box-model tool, if the initial layout of boxes
and sub-boxes is modified by the user, this layout can persist in
XooML through association-level, tool-specific attributes.

4.3 Related to XooML
XML – Extensible Markup Language – lives up to its name. Its
extensibility has been used, as intended, to define a wide-variety
of sub-languages33. XooML is one. Additional standards of repre-
sentation and interchange are generated by the Semantic Web
initiative34 and “sub-initiatives” such as Linked Data35

XooML relates to several of these efforts.
.

First, the seven generalizations could have been supported using
RDF rather than XML and an RDF schema rather than an XML
schema. The languages are expressively equivalent. Both XML
and RDF render information in machine-readable form. However,
languages have distinct communities of adherents. And these
communities have contrasting goals and are pushing supporting
tools and conventions in different directions.
XML is historically centered on the document as a packaging of
information for human consumption. An XML representation of a
document’s information may mean that the document is easier to
produce and maintain and that its information can be used in other
ways too – in a database for example or to produce other docu-
ments. But the document, in one form or another remains a cen-
terpiece of efforts in the XML community.
XooML, too, is focused on an enlarged notion of the document as
a packaging of digital information in various human-readable
forms according to the tools selected. Outlines, mind maps, even
information on the section tabs of OneNote – each is a packaging
of information in human-readable form. Each is a form of digital
document.
Similar remarks as above also apply to the choice of XML over
JSON (JavaScript Object Notation)36

33See://en.wikipedia.org/wiki/List_of_XML_markup_languages.

, a standard for data inter-
change. JSON also has a means of specifying a schema that is
comparable to that of XML. But the document focus of XML

34 http://semanticweb.org/wiki/Main_Page.
35 http://linkeddata.org/.
36 http://www.json.org/.

makes its choice more appropriate as a means of realizing the
seven generalizations37

More specifically, in contrast to both RDF and JSON, the means
for declaration of an XML schema provide more straightforward
support for the representation of document structure [14].

 discussed in this paper.

The structure specified in XooML is minimal but essential. The
fragment must often serve as an indivisible grouping of informa-
tion – establishing a context for the comprehension of and selec-
tion among its constituent associations. Many properties –
“above”, “to the right of” or “most recent among” – are emergent
from and only make sense at the level of this grouping. The frag-
ment is a molecule, so to speak, to the atoms of it constituent as-
sociations – or the corresponding expression of these associations
as RDF statements.
Also critical in the XooML fragment and its grouping of associa-
tions are attributes needed to establish information provenance.
Who (which tool) created a fragment or an individual association?
When? Which other tools have modified same? When? An XML
schema can make explicit provision for these and other attributes
(as these prove necessary). A fragment can be determined to be
invalid if these attributes are not present.
On the other hand, RDF statements can be generated directly from
the information in a XooML fragment38

In its multi-tool focus, XooML also compares to several initia-
tives that use XML to give uniform tool-independent expression
to the user interface (UI). These include UsiXML (User Interface
eXtensible Markup Language)

. For example, the relate-
dItem of the XooML fragment can be the subject of well-formed
statements involving, as predicates and objects, the attributes and
values from both the “common” XooML namespace and from
tool-specific (metadata-specific) sub-elements. Statements also
follow directly from the associations of a XooML fragment.

39, XUL (User Interface Lan-
guage)40, and UIML ((User Interface Markup Language)41

Initiatives towards tool-independent representation of the UI are
perfectly complementary to XooML. XooML aims towards a
diversity of expressions of and interactions with the same struc-
ture across a variety of tools. The user interface initiatives listed
aboveaim towards a uniform representation of and (reasonably)
consistent expression of the “same” UI constructs across obser-
vant tools. The aim at a lower level might be, for example, that the
primary menu toolbar looks and behaves similarly across tools.
The aim at a higher level might be for all mind-mapping applica-
tions to behave consistently with each other. The higher-level aim
may be at cross-purposes to an aim to compete and the lower-
level aim may be better achieved through other means (e.g.,

. These
XML-based sub-languages can be used to express a variety of UI
constructs from simple messages (e.g., “Hello World!”) to sophis-
ticated compound menus.

37 For a discussion of JSON limitations, see

http://blogs.sun.com/bblfish/entry/the_limitations_of_json.
38 RDF/XML (http://www.w3.org/TR/REC-rdf-syntax/) as one

XML-based serialization of an RDF graph can be generated au-
tomatically from XooML via XSLT (Extensible Stylesheet Lan-
guage Transformations, http://www.w3.org/TR/xslt20/).

39 http://www.usixml.org/
40 https://developer.mozilla.org/En/XUL.
41 http://www.uiml.org/specs/index.htm.

http://semanticweb.org/wiki/Main_Page�
http://linkeddata.org/�
http://www.json.org/�
http://blogs.sun.com/bblfish/entry/the_limitations_of_json�
http://www.w3.org/TR/REC-rdf-syntax/�
http://www.w3.org/TR/xslt20/�
http://www.usixml.org/�
https://developer.mozilla.org/En/XUL�
http://www.uiml.org/specs/index.htm�

©William Jones, 2010, all rights reserved. 9

shared components). Regardless, these aims are orthogonal to the
one structure/many tools vision of XooML.
Also of relevance but independent of XooML are stylesheet lan-
guages designed to promote a consistent appearance of documents
(with more general application to the UI and the user experience).
These include CSS (Cascading Style Sheets) 42 and XSL (Extens-
ible Stylesheet Language)43

For example, Planz uses a rudimentary style sheet to enable and
record user-initiated changes in font size for headings and notes.
These settings are stored separately from XooML. Clearly, it de-
feats the “normalizing” purpose of a style sheet if its settings are
stored repeatedly across XooML fragments and their associations.
More generally, the use of style sheets is completely up to the
individual tool and has nothing to do with XooML.

 formatting objects.

5. DISCUSSION
The XooML schema defines a flexible, extensible sub-language of
XML for use to represent what is essentially a directed graph of
nodes pointing to other nodes. A node, as described by a XooML
fragment, can represent any item that is addressable by a URI
including folders, tags, email messages, local documents, and
Web pages.
A fragment is metadata for its relatedItem. This metadata may
closely adhere to the item’s content and structure or not. The me-
tadata may, instead for example, represent the user’s thoughts
about an item (“my review of …”) or include links to other items
that “I want to access while I’m working on this document”.
Fragments can combine to support alternate modes of working
with existing structures, such as folder or tag hierarchies or collec-
tions of songs, photos and articles. Fragments can combine to
define brand-new structures as well. Fragments can “live” any-
where, from the local file system to a database on the Web.
Most important, XooML fragments and their associations can
include any number of new attributes in support of a specific tool
or a class of tools. One structure, supported by many tools.

5.1 Variations in the use of XooML
XooML allows for several variations in its use. Space allows for
the mention of only a few.
Groupwork
XooML readily scales to a small team situation. A detailed dis-
cussion of considerations involved (e.g., how conflicts are de-
tected and resolved) is beyond the scope of this paper. However,
two aspects of XooML are worthy of mention:
1. The granularity of XooML. XooML fragments are modular
and usually small.. Even though two or more people are working
on the same “document” (e.g. a larger structure as displayed in a
tool like Planz or FreeMind), the chances that people are trying to
change the same fragment at the same time are small.
2. Granularity of committed modifications. XooML admits to a
fine-grained, even character-by-character, commit of modifica-
tion. This means, in turn, that a failure of commitment – e.g., in a
case where the XooML fragment has been modified by someone
else since the user’s current view was generated – results, in worst
case, in only a small loss of time and data.

42 http://www.w3.org/Style/CSS/.
43 http://www.w3.org/TR/xsl11/.

XooML fragments as items in their own right
A XooML fragment is addressable; it has a URI. A XooML frag-
ment might itself become a relatedItem that is the subject of the
metadata of another XooML fragment. This might happen, for
example, if John wishes to subscribe to XooML annotations made
by Jill, where these annotations, in turn, might have a Web page
as a relatedItem.
Piggy-back use of someone else’s taxonomy
Why develop a brand-new organization when others may be
available already? Personally owned XooML fragments might be
placed in association with the categories of a publicly available,
Web-based taxonomy. Taxonomies (categories and classification
schemes) are out there for the choosing ranging from the Library
of Congress Classification Outline44 to the categories used by
Stephen Covey on his blog.45

5.2 Issues in the development and use of
XooML

A number of issues arise surrounding the development of
XooML. How, for example, are interfaces obtained for the enume-
ration and modification of various information items? When to
use relative vs. absolute addressing? How best to support group
use of XooML? How to insure that tools using XooML even if
they are well-intentioned are well-behaved? It is reasonable, for
example, to expect that a tool would not write over the attributes
declared in the sub-element of another tool. But how is this beha-
vior enforced or even supported (i.e., against inadvertently bad
behavior)?
Other issues arise surrounding a person’s use of XooML. Will
people recognize the common structure presented, in very differ-
ent ways, by different tools? Will people recognize, for example,
that the mind map in Figure 6 represents the same structure as
depicted by the home re-model plan of Figure 1? Do benefits
follow (e.g., greater familiarity) even when there is no recogni-
tion? When might the use of multiple tools cause confusion?

5.3 Next steps in XooML R&D
Next steps include:
1. A toolkit to support consistent use of XooML through a

provision for basic manipulations of XooML fragments
(e.g., getAttributeValue, setAttributeValue, createAssocia-
tion, destroyAssociation, …)

2. A log for recording informational events. The log can be read
from and written to directly by participating tools and is also
written to as an incidental by-product of XooML toolkit use.

3. The development of XooML wrappers for more OSS tools.46

4. User studies aimed an understanding when the re-purposing
of structure through different tools is helpful and when it
isn’t.

6. CONCLUSION
People express a desire for a greater integration of personal in-
formation – especially now in the face of a proliferation of Web-

44 http://www.loc.gov/catdir/cpso/lcco/.
45 https://www.stephencovey.com/blog/.
46 There are many to choose from (e.g.,

http://en.wikipedia.org/wiki/Commercial_open_source_applicat
ions#List_of_Commercial_Open_Source_Applications_and_Ser
vices)

http://www.w3.org/Style/CSS/�
http://www.w3.org/TR/xsl11/�
http://www.loc.gov/catdir/cpso/lcco/�
https://www.stephencovey.com/blog/�
http://en.wikipedia.org/wiki/Commercial_open_source_applications#List_of_Commercial_Open_Source_Applications_and_Services�
http://en.wikipedia.org/wiki/Commercial_open_source_applications#List_of_Commercial_Open_Source_Applications_and_Services�
http://en.wikipedia.org/wiki/Commercial_open_source_applications#List_of_Commercial_Open_Source_Applications_and_Services�

©William Jones, 2010, all rights reserved. 10

based tools and services. But tools that aim to integrate can, in-
stead, make matters worse as their new structures are only added
to, but don’t replace, the structures already in use to manage per-
sonal information. Integration may best happen by laying a tool-
independent and operating-system-independent groundwork
through a public standard such as XML. XooML is guided by a
vision of “non-disruptive” innovation. Let tools continue to com-
pete for our money, attention and time. But let this happen with-
out forcing us to make a choice between the new tool and our
current ways of working with and understanding our information.

7. ACKNOWLEDGMENTS
This material is based on work supported by the National Science
Foundation (#0534386).

8. REFERENCES
1. Boardman, R. and Sasse, M.A. "Stuff goes into the computer

and doesn't come out" A cross-tool study of personal infor-
mation management. ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI 2004), (2004).

2. Bruce, H., Jones, W., and Dumais, S. Information behavior
that keeps found things found. Information Research 10, 1
(2004).

3. Bruce, H., Wenning, A., Jones, E., Vinson, J., and Jones, W.
Seeking an ideal solution to the management of personal in-
formation collections. (2010).

4. Bush, V. As We May Think. The Atlantic Monthly 176,
1945, 641-649.

5. Catarci, T., Dong, L., Halevy, A., and Poggi, A. Structure
everything. In Personal Information Management. Universi-
ty of Washington Press, 2007.

6. Chaffee, J. and Gauch, S. Personal ontologies for web navi-
gation. CIKM 2000 : 9th International Conference on Infor-
mation Knowledge Management, ACM (2000), 227-234.

7. Civan, A., Jones, W., Klasnja, P., and Bruce, H. Better to
Organize Personal Information by Folders Or by Tags?: The
Devil Is in the Details. 68th Annual Meeting of the American
Society for Information Science and Technology (ASIST
2008), (2008).

8. Cruz, I.F. and Xiao, H. A layered framework supporting
personal information integration and application design for
the semantic desktop. The VLDB Journal 17, 6 (2008), 1385-
1406.

9. Dourish, P., Edwards, W., LaMarca, A., and Salisbury, M.
Using properties for uniform interaction in the Presto Docu-
ment System. The 12th Annual ACM Symposium on User In-
terface Software and Technology (UIST'99), (1999).

10. Dourish, P., Edwards, W., LaMarca, A., and Salisbury, M.
Presto: an experimental architecture for fluid interactive
document spaces. ACM Transactions on Computer-Human
Interaction 6, 2 (1999), 133-161.

11. Freeman, E. and Gelernter, D. Lifestreams: A storage model
for personal data. ACM SIGMOD Record (ACM Special In-

terest Group on Management of Data) 25, 1 (1996), 80-86.
12. Gemmell, J., Bell, G., and Lueder, R. MyLifeBits: a personal

database for everything. Commun. ACM 49, 1 (2006), 88-95.
13. Greenberg. Metadata and Digital Information. In Encyclope-

dia of Library and Information. 2010, 3610 — 3623.
14. Hunter, J. and Lagoze, C. Combining RDF and XML Sche-

mas to Enhance Interoperability Between Metadata Applica-
tion Profiles.
http://www10.org/cdrom/papers/572/index.html.

15. Jones, E., Bruce, H., Klasnja, P., and Jones, W. “I Give Up!"
Five Factors that Contribute to the Abandonment of Infor-
mation Management Strategies. (2008).

16. Jones, W. Keeping Found Things Found: The Study and
Practice of Personal Information Management. Morgan
Kaufmann Publishers, San Francisco, CA, 2007.

17. Jones, W., Bruce, H., Foxley, A., and Munat, C. Planning
personal projects and organizing personal information. 69th
Annual Meeting of the American Society for Information
Science and Technology (ASIST 2006), American Society for
Information Science & Technology (2006), TBD.

18. Jones, W., Klasnja, P., Civan, A., and Adcock, M. The Per-
sonal Project Planner: Planning to Organize Personal Infor-
mation. ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI 2008), ACM, New York, NY
(2008), 681-684.

19. Jones, W., Phuwanartnurak, A.J., Gill, R., and Bruce, H.
Don't take my folders away! Organizing personal informa-
tion to get things done. ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI 2005), ACM Press
(2005), 1505-1508.

20. Jones, W., Hou, D., Sethanandha, B.D., Bi, S., and Gemmell,
J. Planz to put our digital information in its place. Proceed-
ings of the 28th of the international conference extended ab-
stracts on Human factors in computing systems, ACM
(2010), 2803-2812.

21. Karger, D.R. Unify Everything: It’s All the Same to Me. In
Personal Information Management. University of Washing-
ton Press, Seattle, WA, 2007.

22. Karger, D.R., Bakshi, K., Huynh, D., Quan, D., and Sinha,
V. Haystack: A general purpose information management
tool for end users of semistructured data. Second Biennial
Conference on Innovative Data Systems Research (CIDR
2005), (2005).

23. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., and
Giannopoulou, E. Ontology visualization methods\—a
survey. ACM Comput. Surv. 39, 4 (2007), 10.

24. Lansdale, M. The psychology of personal information man-
agement. Appl. Ergon. 19, 1 (1988), 55-66.

25. Malone, T.W. How do people organize their desks: implica-
tions for the design of office information-systems. ACM
Transactions on Office Information Systems 1, 1 (1983), 99-
112.

	ABSTRACT
	1. INTRODUCTION
	1.1 The plan and purpose of this paper

	2. PLANZ
	2.1 On the front-end, a document
	2.2 On the back-end, the file system
	2.3 A meeting in the middle
	2.4 Current status and lessons learned

	3. SEVEN GENERALIZATIONS
	G1. From some tools to many
	G2. Tool classes and metadata standards
	G3. From file folder to any information item.
	G4. The XML fragment: from file system folder to anywhere.
	G5. The level of synchronization: From strong to varied.
	G6. Means of enumerating and modifying item structure.
	G7. From operating system-specific hierarchy to a distributed, universally accessible directed graph.

	4. XOOML
	4.1 XooML for seven generalizations
	G1. From some tools to many
	G2. Tool classes and metadata standards
	G3 thru G6
	G7. From operating system-specific hierarchy to a distributed, universally accessible directed graph.

	4.2 Working with XooML
	4.3 Related to XooML

	5. DISCUSSION
	5.1 Variations in the use of XooML
	Groupwork
	XooML fragments as items in their own right
	Piggy-back use of someone else’s taxonomy

	5.2 Issues in the development and use of XooML
	5.3 Next steps in XooML R&D

	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

